MakeItFrom.com
Menu (ESC)

Grade CW2M Nickel vs. EN AC-46400 Aluminum

Grade CW2M nickel belongs to the nickel alloys classification, while EN AC-46400 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CW2M nickel and the bottom bar is EN AC-46400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 23
1.1 to 1.7
Fatigue Strength, MPa 190
75 to 85
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 83
27
Tensile Strength: Ultimate (UTS), MPa 560
170 to 310
Tensile Strength: Yield (Proof), MPa 310
110 to 270

Thermal Properties

Latent Heat of Fusion, J/g 330
520
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1520
610
Melting Onset (Solidus), °C 1460
570
Specific Heat Capacity, J/kg-K 430
890
Thermal Expansion, µm/m-K 12
22

Otherwise Unclassified Properties

Base Metal Price, % relative 70
9.5
Density, g/cm3 8.8
2.7
Embodied Carbon, kg CO2/kg material 12
7.8
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 290
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
1.7 to 4.9
Resilience: Unit (Modulus of Resilience), kJ/m3 220
82 to 500
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
52
Strength to Weight: Axial, points 18
18 to 32
Strength to Weight: Bending, points 17
26 to 38
Thermal Shock Resistance, points 16
7.8 to 14

Alloy Composition

Aluminum (Al), % 0
85.4 to 90.5
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 15 to 17.5
0
Copper (Cu), % 0
0.8 to 1.3
Iron (Fe), % 0 to 2.0
0 to 0.8
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.25 to 0.65
Manganese (Mn), % 0 to 1.0
0.15 to 0.55
Molybdenum (Mo), % 15 to 17.5
0
Nickel (Ni), % 60.1 to 70
0 to 0.2
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.8
8.3 to 9.7
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0 to 1.0
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.25