MakeItFrom.com
Menu (ESC)

Grade CW2M Nickel vs. Titanium 15-3-3-3

Grade CW2M nickel belongs to the nickel alloys classification, while titanium 15-3-3-3 belongs to the titanium alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade CW2M nickel and the bottom bar is titanium 15-3-3-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 23
5.7 to 8.0
Fatigue Strength, MPa 190
610 to 710
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 83
39
Tensile Strength: Ultimate (UTS), MPa 560
1120 to 1390
Tensile Strength: Yield (Proof), MPa 310
1100 to 1340

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 960
430
Melting Completion (Liquidus), °C 1520
1620
Melting Onset (Solidus), °C 1460
1560
Specific Heat Capacity, J/kg-K 430
520
Thermal Expansion, µm/m-K 12
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 70
40
Density, g/cm3 8.8
4.8
Embodied Carbon, kg CO2/kg material 12
59
Embodied Energy, MJ/kg 170
950
Embodied Water, L/kg 290
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
78 to 89
Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 23
32
Strength to Weight: Axial, points 18
64 to 80
Strength to Weight: Bending, points 17
50 to 57
Thermal Shock Resistance, points 16
79 to 98

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.020
0 to 0.050
Chromium (Cr), % 15 to 17.5
2.5 to 3.5
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 2.0
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 15 to 17.5
0
Nickel (Ni), % 60.1 to 70
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
2.5 to 3.5
Titanium (Ti), % 0
72.6 to 78.5
Tungsten (W), % 0 to 1.0
0
Vanadium (V), % 0
14 to 16
Residuals, % 0
0 to 0.4