MakeItFrom.com
Menu (ESC)

Grade CW6M Nickel vs. 2219 Aluminum

Grade CW6M nickel belongs to the nickel alloys classification, while 2219 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CW6M nickel and the bottom bar is 2219 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
72
Elongation at Break, % 29
2.2 to 20
Fatigue Strength, MPa 210
90 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
27
Tensile Strength: Ultimate (UTS), MPa 560
180 to 480
Tensile Strength: Yield (Proof), MPa 310
88 to 390

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 970
230
Melting Completion (Liquidus), °C 1530
640
Melting Onset (Solidus), °C 1470
540
Specific Heat Capacity, J/kg-K 430
870
Thermal Expansion, µm/m-K 12
22

Otherwise Unclassified Properties

Base Metal Price, % relative 65
11
Density, g/cm3 8.8
3.1
Embodied Carbon, kg CO2/kg material 13
8.2
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 300
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
9.6 to 60
Resilience: Unit (Modulus of Resilience), kJ/m3 220
54 to 1060
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
44
Strength to Weight: Axial, points 18
16 to 43
Strength to Weight: Bending, points 17
23 to 44
Thermal Shock Resistance, points 16
8.2 to 22

Alloy Composition

Aluminum (Al), % 0
91.5 to 93.8
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0
5.8 to 6.8
Iron (Fe), % 0 to 3.0
0 to 0.3
Magnesium (Mg), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0.2 to 0.4
Molybdenum (Mo), % 17 to 20
0
Nickel (Ni), % 54.9 to 66
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.020 to 0.1
Vanadium (V), % 0
0.050 to 0.15
Zinc (Zn), % 0
0 to 0.1
Zirconium (Zr), % 0
0.1 to 0.25
Residuals, % 0
0 to 0.15