MakeItFrom.com
Menu (ESC)

Grade CW6M Nickel vs. 7050 Aluminum

Grade CW6M nickel belongs to the nickel alloys classification, while 7050 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CW6M nickel and the bottom bar is 7050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
70
Elongation at Break, % 29
2.2 to 12
Fatigue Strength, MPa 210
130 to 210
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 84
26
Tensile Strength: Ultimate (UTS), MPa 560
490 to 570
Tensile Strength: Yield (Proof), MPa 310
390 to 500

Thermal Properties

Latent Heat of Fusion, J/g 330
370
Maximum Temperature: Mechanical, °C 970
190
Melting Completion (Liquidus), °C 1530
630
Melting Onset (Solidus), °C 1470
490
Specific Heat Capacity, J/kg-K 430
860
Thermal Expansion, µm/m-K 12
24

Otherwise Unclassified Properties

Base Metal Price, % relative 65
10
Density, g/cm3 8.8
3.1
Embodied Carbon, kg CO2/kg material 13
8.2
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 300
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
10 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 220
1110 to 1760
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
45
Strength to Weight: Axial, points 18
45 to 51
Strength to Weight: Bending, points 17
45 to 50
Thermal Shock Resistance, points 16
21 to 25

Alloy Composition

Aluminum (Al), % 0
87.3 to 92.1
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 17 to 20
0 to 0.040
Copper (Cu), % 0
2.0 to 2.6
Iron (Fe), % 0 to 3.0
0 to 0.15
Magnesium (Mg), % 0
1.9 to 2.6
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 17 to 20
0
Nickel (Ni), % 54.9 to 66
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.12
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.060
Zinc (Zn), % 0
5.7 to 6.7
Zirconium (Zr), % 0
0.080 to 0.15
Residuals, % 0
0 to 0.15