MakeItFrom.com
Menu (ESC)

Grade CW6M Nickel vs. EN AC-43300 Aluminum

Grade CW6M nickel belongs to the nickel alloys classification, while EN AC-43300 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CW6M nickel and the bottom bar is EN AC-43300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
71
Elongation at Break, % 29
3.4 to 6.7
Fatigue Strength, MPa 210
76 to 77
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
27
Tensile Strength: Ultimate (UTS), MPa 560
280 to 290
Tensile Strength: Yield (Proof), MPa 310
210 to 230

Thermal Properties

Latent Heat of Fusion, J/g 330
540
Maximum Temperature: Mechanical, °C 970
170
Melting Completion (Liquidus), °C 1530
600
Melting Onset (Solidus), °C 1470
590
Specific Heat Capacity, J/kg-K 430
910
Thermal Expansion, µm/m-K 12
22

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.5
Density, g/cm3 8.8
2.5
Embodied Carbon, kg CO2/kg material 13
7.9
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 300
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
9.1 to 17
Resilience: Unit (Modulus of Resilience), kJ/m3 220
300 to 370
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 23
54
Strength to Weight: Axial, points 18
31 to 32
Strength to Weight: Bending, points 17
37 to 38
Thermal Shock Resistance, points 16
13 to 14

Alloy Composition

Aluminum (Al), % 0
88.9 to 90.8
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 0 to 3.0
0 to 0.19
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 17 to 20
0
Nickel (Ni), % 54.9 to 66
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
9.0 to 10
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1