MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. C355.0 Aluminum

Grade CW6MC nickel belongs to the nickel alloys classification, while C355.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is C355.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 28
2.7 to 3.8
Fatigue Strength, MPa 210
76 to 84
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
26
Tensile Strength: Ultimate (UTS), MPa 540
290 to 310
Tensile Strength: Yield (Proof), MPa 310
200 to 230

Thermal Properties

Latent Heat of Fusion, J/g 330
470
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1480
620
Melting Onset (Solidus), °C 1430
570
Specific Heat Capacity, J/kg-K 440
900
Thermal Conductivity, W/m-K 11
150
Thermal Expansion, µm/m-K 12
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
39
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
130

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 8.6
2.7
Embodied Carbon, kg CO2/kg material 14
8.0
Embodied Energy, MJ/kg 200
150
Embodied Water, L/kg 290
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
7.5 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 240
290 to 380
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 18
30 to 32
Strength to Weight: Bending, points 17
36 to 37
Thermal Diffusivity, mm2/s 2.8
60
Thermal Shock Resistance, points 15
13 to 14

Alloy Composition

Aluminum (Al), % 0
91.7 to 94.1
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0
1.0 to 1.5
Iron (Fe), % 0 to 5.0
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 55.4 to 68.9
0
Niobium (Nb), % 3.2 to 4.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 1.0
4.5 to 5.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15