MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. Grade 35 Titanium

Grade CW6MC nickel belongs to the nickel alloys classification, while grade 35 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is grade 35 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
5.6
Fatigue Strength, MPa 210
330
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 79
41
Tensile Strength: Ultimate (UTS), MPa 540
1000
Tensile Strength: Yield (Proof), MPa 310
630

Thermal Properties

Latent Heat of Fusion, J/g 330
420
Maximum Temperature: Mechanical, °C 980
320
Melting Completion (Liquidus), °C 1480
1630
Melting Onset (Solidus), °C 1430
1580
Specific Heat Capacity, J/kg-K 440
550
Thermal Conductivity, W/m-K 11
7.4
Thermal Expansion, µm/m-K 12
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 80
37
Density, g/cm3 8.6
4.6
Embodied Carbon, kg CO2/kg material 14
33
Embodied Energy, MJ/kg 200
530
Embodied Water, L/kg 290
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
49
Resilience: Unit (Modulus of Resilience), kJ/m3 240
1830
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
35
Strength to Weight: Axial, points 18
61
Strength to Weight: Bending, points 17
49
Thermal Diffusivity, mm2/s 2.8
3.0
Thermal Shock Resistance, points 15
70

Alloy Composition

Aluminum (Al), % 0
4.0 to 5.0
Carbon (C), % 0 to 0.060
0 to 0.080
Chromium (Cr), % 20 to 23
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 5.0
0.2 to 0.8
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
1.5 to 2.5
Nickel (Ni), % 55.4 to 68.9
0
Niobium (Nb), % 3.2 to 4.5
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 1.0
0.2 to 0.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
88.4 to 93
Vanadium (V), % 0
1.1 to 2.1
Residuals, % 0
0 to 0.4