MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. SAE-AISI 4130 Steel

Grade CW6MC nickel belongs to the nickel alloys classification, while SAE-AISI 4130 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is SAE-AISI 4130 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
13 to 26
Fatigue Strength, MPa 210
320 to 660
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 79
73
Tensile Strength: Ultimate (UTS), MPa 540
530 to 1040
Tensile Strength: Yield (Proof), MPa 310
440 to 980

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 980
420
Melting Completion (Liquidus), °C 1480
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 11
43
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 80
2.4
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 14
1.5
Embodied Energy, MJ/kg 200
20
Embodied Water, L/kg 290
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
83 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 240
500 to 2550
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 18
19 to 37
Strength to Weight: Bending, points 17
19 to 29
Thermal Diffusivity, mm2/s 2.8
12
Thermal Shock Resistance, points 15
16 to 31

Alloy Composition

Carbon (C), % 0 to 0.060
0.28 to 0.33
Chromium (Cr), % 20 to 23
0.8 to 1.1
Iron (Fe), % 0 to 5.0
97.3 to 98.2
Manganese (Mn), % 0 to 1.0
0.4 to 0.6
Molybdenum (Mo), % 8.0 to 10
0.15 to 0.25
Nickel (Ni), % 55.4 to 68.9
0
Niobium (Nb), % 3.2 to 4.5
0
Phosphorus (P), % 0 to 0.015
0 to 0.035
Silicon (Si), % 0 to 1.0
0.15 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.040