MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. C64800 Bronze

Grade CW6MC nickel belongs to the nickel alloys classification, while C64800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is C64800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 28
8.0
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
44
Tensile Strength: Ultimate (UTS), MPa 540
640
Tensile Strength: Yield (Proof), MPa 310
630

Thermal Properties

Latent Heat of Fusion, J/g 330
220
Maximum Temperature: Mechanical, °C 980
200
Melting Completion (Liquidus), °C 1480
1090
Melting Onset (Solidus), °C 1430
1030
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 11
260
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
65
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
66

Otherwise Unclassified Properties

Base Metal Price, % relative 80
33
Density, g/cm3 8.6
8.9
Embodied Carbon, kg CO2/kg material 14
2.7
Embodied Energy, MJ/kg 200
43
Embodied Water, L/kg 290
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
51
Resilience: Unit (Modulus of Resilience), kJ/m3 240
1680
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 18
20
Strength to Weight: Bending, points 17
19
Thermal Diffusivity, mm2/s 2.8
75
Thermal Shock Resistance, points 15
23

Alloy Composition

Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20 to 23
0 to 0.090
Cobalt (Co), % 0
1.0 to 3.0
Copper (Cu), % 0
92.4 to 98.8
Iron (Fe), % 0 to 5.0
0 to 1.0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 55.4 to 68.9
0 to 0.5
Niobium (Nb), % 3.2 to 4.5
0
Phosphorus (P), % 0 to 0.015
0 to 0.5
Silicon (Si), % 0 to 1.0
0.2 to 1.0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5