MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. C84800 Brass

Grade CW6MC nickel belongs to the nickel alloys classification, while C84800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is C84800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 28
18
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
39
Tensile Strength: Ultimate (UTS), MPa 540
230
Tensile Strength: Yield (Proof), MPa 310
100

Thermal Properties

Latent Heat of Fusion, J/g 330
180
Maximum Temperature: Mechanical, °C 980
150
Melting Completion (Liquidus), °C 1480
950
Melting Onset (Solidus), °C 1430
830
Specific Heat Capacity, J/kg-K 440
370
Thermal Conductivity, W/m-K 11
72
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
16
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
17

Otherwise Unclassified Properties

Base Metal Price, % relative 80
27
Density, g/cm3 8.6
8.6
Embodied Carbon, kg CO2/kg material 14
2.8
Embodied Energy, MJ/kg 200
46
Embodied Water, L/kg 290
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
34
Resilience: Unit (Modulus of Resilience), kJ/m3 240
53
Stiffness to Weight: Axial, points 13
6.6
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 18
7.3
Strength to Weight: Bending, points 17
9.6
Thermal Diffusivity, mm2/s 2.8
23
Thermal Shock Resistance, points 15
8.2

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0
75 to 77
Iron (Fe), % 0 to 5.0
0 to 0.4
Lead (Pb), % 0
5.5 to 7.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 55.4 to 68.9
0 to 1.0
Niobium (Nb), % 3.2 to 4.5
0
Phosphorus (P), % 0 to 0.015
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
2.0 to 3.0
Zinc (Zn), % 0
13 to 17
Residuals, % 0
0 to 0.7