MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. C85900 Brass

Grade CW6MC nickel belongs to the nickel alloys classification, while C85900 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 28
30
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 540
460
Tensile Strength: Yield (Proof), MPa 310
190

Thermal Properties

Latent Heat of Fusion, J/g 330
170
Maximum Temperature: Mechanical, °C 980
130
Melting Completion (Liquidus), °C 1480
830
Melting Onset (Solidus), °C 1430
790
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 11
89
Thermal Expansion, µm/m-K 12
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
25
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
28

Otherwise Unclassified Properties

Base Metal Price, % relative 80
24
Density, g/cm3 8.6
8.0
Embodied Carbon, kg CO2/kg material 14
2.9
Embodied Energy, MJ/kg 200
49
Embodied Water, L/kg 290
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
110
Resilience: Unit (Modulus of Resilience), kJ/m3 240
170
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 18
16
Strength to Weight: Bending, points 17
17
Thermal Diffusivity, mm2/s 2.8
29
Thermal Shock Resistance, points 15
16

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0
0 to 0.2
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0
58 to 62
Iron (Fe), % 0 to 5.0
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.0
0 to 0.010
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 55.4 to 68.9
0 to 1.5
Niobium (Nb), % 3.2 to 4.5
0
Phosphorus (P), % 0 to 0.015
0 to 0.010
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.030
0.1 to 0.65
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
31 to 41
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.7