MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. C96600 Copper

Grade CW6MC nickel belongs to the nickel alloys classification, while C96600 copper belongs to the copper alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is C96600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 28
7.0
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 79
52
Tensile Strength: Ultimate (UTS), MPa 540
760
Tensile Strength: Yield (Proof), MPa 310
480

Thermal Properties

Latent Heat of Fusion, J/g 330
240
Maximum Temperature: Mechanical, °C 980
280
Melting Completion (Liquidus), °C 1480
1180
Melting Onset (Solidus), °C 1430
1100
Specific Heat Capacity, J/kg-K 440
400
Thermal Conductivity, W/m-K 11
30
Thermal Expansion, µm/m-K 12
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
4.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 80
65
Density, g/cm3 8.6
8.9
Embodied Carbon, kg CO2/kg material 14
7.0
Embodied Energy, MJ/kg 200
100
Embodied Water, L/kg 290
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
47
Resilience: Unit (Modulus of Resilience), kJ/m3 240
830
Stiffness to Weight: Axial, points 13
8.7
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 18
24
Strength to Weight: Bending, points 17
21
Thermal Diffusivity, mm2/s 2.8
8.4
Thermal Shock Resistance, points 15
25

Alloy Composition

Beryllium (Be), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0
63.5 to 69.8
Iron (Fe), % 0 to 5.0
0.8 to 1.1
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 55.4 to 68.9
29 to 33
Niobium (Nb), % 3.2 to 4.5
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.5