MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. C96900 Copper-nickel

Grade CW6MC nickel belongs to the nickel alloys classification, while C96900 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is C96900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 28
4.5
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 79
45
Tensile Strength: Ultimate (UTS), MPa 540
850
Tensile Strength: Yield (Proof), MPa 310
830

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 980
210
Melting Completion (Liquidus), °C 1480
1060
Melting Onset (Solidus), °C 1430
960
Specific Heat Capacity, J/kg-K 440
380
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 80
39
Density, g/cm3 8.6
8.8
Embodied Carbon, kg CO2/kg material 14
4.6
Embodied Energy, MJ/kg 200
72
Embodied Water, L/kg 290
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
38
Resilience: Unit (Modulus of Resilience), kJ/m3 240
2820
Stiffness to Weight: Axial, points 13
7.7
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 18
27
Strength to Weight: Bending, points 17
23
Thermal Shock Resistance, points 15
30

Alloy Composition

Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0
73.6 to 78
Iron (Fe), % 0 to 5.0
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 1.0
0.050 to 0.3
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 55.4 to 68.9
14.5 to 15.5
Niobium (Nb), % 3.2 to 4.5
0 to 0.1
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5