MakeItFrom.com
Menu (ESC)

Grade CW6MC Nickel vs. S17400 Stainless Steel

Grade CW6MC nickel belongs to the nickel alloys classification, while S17400 stainless steel belongs to the iron alloys. They have a modest 24% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is grade CW6MC nickel and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
11 to 21
Fatigue Strength, MPa 210
380 to 670
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 79
75
Tensile Strength: Ultimate (UTS), MPa 540
910 to 1390
Tensile Strength: Yield (Proof), MPa 310
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 330
280
Maximum Temperature: Mechanical, °C 980
850
Melting Completion (Liquidus), °C 1480
1440
Melting Onset (Solidus), °C 1430
1400
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 11
17
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.4
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 80
14
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 14
2.7
Embodied Energy, MJ/kg 200
39
Embodied Water, L/kg 290
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 240
880 to 4060
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 18
32 to 49
Strength to Weight: Bending, points 17
27 to 35
Thermal Diffusivity, mm2/s 2.8
4.5
Thermal Shock Resistance, points 15
30 to 46

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.070
Chromium (Cr), % 20 to 23
15 to 17
Copper (Cu), % 0
3.0 to 5.0
Iron (Fe), % 0 to 5.0
70.4 to 78.9
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 8.0 to 10
0
Nickel (Ni), % 55.4 to 68.9
3.0 to 5.0
Niobium (Nb), % 3.2 to 4.5
0.15 to 0.45
Phosphorus (P), % 0 to 0.015
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030