MakeItFrom.com
Menu (ESC)

Grade CX2M Nickel vs. S44627 Stainless Steel

Grade CX2M nickel belongs to the nickel alloys classification, while S44627 stainless steel belongs to the iron alloys. They have a modest 26% of their average alloy composition in common, which, by itself, doesn't mean much. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is grade CX2M nickel and the bottom bar is S44627 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
200
Elongation at Break, % 45
24
Fatigue Strength, MPa 260
200
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 84
80
Tensile Strength: Ultimate (UTS), MPa 550
490
Tensile Strength: Yield (Proof), MPa 310
300

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 990
1100
Melting Completion (Liquidus), °C 1500
1440
Melting Onset (Solidus), °C 1450
1400
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 10
17
Thermal Expansion, µm/m-K 12
11

Otherwise Unclassified Properties

Base Metal Price, % relative 65
14
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 12
2.9
Embodied Energy, MJ/kg 160
41
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
100
Resilience: Unit (Modulus of Resilience), kJ/m3 220
220
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 23
25
Strength to Weight: Axial, points 18
18
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 2.7
4.6
Thermal Shock Resistance, points 15
16

Alloy Composition

Carbon (C), % 0 to 0.020
0 to 0.010
Chromium (Cr), % 22 to 24
25 to 27.5
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 0 to 1.5
69.2 to 74.2
Manganese (Mn), % 0 to 1.0
0 to 0.4
Molybdenum (Mo), % 15 to 16.5
0.75 to 1.5
Nickel (Ni), % 56.4 to 63
0 to 0.5
Niobium (Nb), % 0
0.050 to 0.2
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.4
Sulfur (S), % 0 to 0.020
0 to 0.020