MakeItFrom.com
Menu (ESC)

Grade CX2MW Nickel vs. 5182 Aluminum

Grade CX2MW nickel belongs to the nickel alloys classification, while 5182 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CX2MW nickel and the bottom bar is 5182 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
68
Elongation at Break, % 34
1.1 to 12
Fatigue Strength, MPa 260
100 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
25
Tensile Strength: Ultimate (UTS), MPa 620
280 to 420
Tensile Strength: Yield (Proof), MPa 350
130 to 360

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 980
180
Melting Completion (Liquidus), °C 1550
640
Melting Onset (Solidus), °C 1490
590
Specific Heat Capacity, J/kg-K 430
900
Thermal Conductivity, W/m-K 10
130
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
28
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
94

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.5
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 12
8.9
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 290
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
2.6 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 290
120 to 950
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 19
29 to 44
Strength to Weight: Bending, points 18
36 to 47
Thermal Diffusivity, mm2/s 2.7
53
Thermal Shock Resistance, points 17
12 to 19

Alloy Composition

Aluminum (Al), % 0
93.2 to 95.8
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 20 to 22.5
0 to 0.1
Copper (Cu), % 0
0 to 0.15
Iron (Fe), % 2.0 to 6.0
0 to 0.35
Magnesium (Mg), % 0
4.0 to 5.0
Manganese (Mn), % 0 to 1.0
0.2 to 0.5
Molybdenum (Mo), % 12.5 to 14.5
0
Nickel (Ni), % 51.3 to 63
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.8
0 to 0.2
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15