MakeItFrom.com
Menu (ESC)

Grade CX2MW Nickel vs. 6066 Aluminum

Grade CX2MW nickel belongs to the nickel alloys classification, while 6066 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CX2MW nickel and the bottom bar is 6066 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
70
Elongation at Break, % 34
7.8 to 17
Fatigue Strength, MPa 260
94 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
26
Tensile Strength: Ultimate (UTS), MPa 620
160 to 400
Tensile Strength: Yield (Proof), MPa 350
93 to 360

Thermal Properties

Latent Heat of Fusion, J/g 330
410
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1550
650
Melting Onset (Solidus), °C 1490
560
Specific Heat Capacity, J/kg-K 430
890
Thermal Conductivity, W/m-K 10
150
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
40
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
130

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.5
Density, g/cm3 8.9
2.8
Embodied Carbon, kg CO2/kg material 12
8.3
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 290
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
23 to 52
Resilience: Unit (Modulus of Resilience), kJ/m3 290
61 to 920
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 23
49
Strength to Weight: Axial, points 19
16 to 39
Strength to Weight: Bending, points 18
23 to 43
Thermal Diffusivity, mm2/s 2.7
61
Thermal Shock Resistance, points 17
6.9 to 17

Alloy Composition

Aluminum (Al), % 0
93 to 97
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 20 to 22.5
0 to 0.4
Copper (Cu), % 0
0.7 to 1.2
Iron (Fe), % 2.0 to 6.0
0 to 0.5
Magnesium (Mg), % 0
0.8 to 1.4
Manganese (Mn), % 0 to 1.0
0.6 to 1.1
Molybdenum (Mo), % 12.5 to 14.5
0
Nickel (Ni), % 51.3 to 63
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.8
0.9 to 1.8
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15