MakeItFrom.com
Menu (ESC)

Grade CX2MW Nickel vs. 7108 Aluminum

Grade CX2MW nickel belongs to the nickel alloys classification, while 7108 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CX2MW nickel and the bottom bar is 7108 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
69
Elongation at Break, % 34
11
Fatigue Strength, MPa 260
120
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 84
26
Tensile Strength: Ultimate (UTS), MPa 620
350
Tensile Strength: Yield (Proof), MPa 350
290

Thermal Properties

Latent Heat of Fusion, J/g 330
380
Maximum Temperature: Mechanical, °C 980
210
Melting Completion (Liquidus), °C 1550
630
Melting Onset (Solidus), °C 1490
530
Specific Heat Capacity, J/kg-K 430
880
Thermal Conductivity, W/m-K 10
150
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
39
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
120

Otherwise Unclassified Properties

Base Metal Price, % relative 65
9.5
Density, g/cm3 8.9
2.9
Embodied Carbon, kg CO2/kg material 12
8.3
Embodied Energy, MJ/kg 170
150
Embodied Water, L/kg 290
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
38
Resilience: Unit (Modulus of Resilience), kJ/m3 290
620
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
47
Strength to Weight: Axial, points 19
34
Strength to Weight: Bending, points 18
38
Thermal Diffusivity, mm2/s 2.7
59
Thermal Shock Resistance, points 17
16

Alloy Composition

Aluminum (Al), % 0
92.4 to 94.7
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 20 to 22.5
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 2.0 to 6.0
0 to 0.1
Magnesium (Mg), % 0
0.7 to 1.4
Manganese (Mn), % 0 to 1.0
0 to 0.050
Molybdenum (Mo), % 12.5 to 14.5
0
Nickel (Ni), % 51.3 to 63
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.8
0 to 0.1
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.050
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
4.5 to 5.5
Zirconium (Zr), % 0
0.12 to 0.25
Residuals, % 0
0 to 0.15