MakeItFrom.com
Menu (ESC)

Grade CX2MW Nickel vs. EN 1.1132 Steel

Grade CX2MW nickel belongs to the nickel alloys classification, while EN 1.1132 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade CX2MW nickel and the bottom bar is EN 1.1132 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
190
Elongation at Break, % 34
12 to 24
Fatigue Strength, MPa 260
180 to 280
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 84
73
Tensile Strength: Ultimate (UTS), MPa 620
370 to 490
Tensile Strength: Yield (Proof), MPa 350
240 to 400

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 980
400
Melting Completion (Liquidus), °C 1550
1460
Melting Onset (Solidus), °C 1490
1420
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 10
51
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 65
1.8
Density, g/cm3 8.9
7.9
Embodied Carbon, kg CO2/kg material 12
1.4
Embodied Energy, MJ/kg 170
18
Embodied Water, L/kg 290
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
38 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 290
160 to 430
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 19
13 to 17
Strength to Weight: Bending, points 18
15 to 18
Thermal Diffusivity, mm2/s 2.7
14
Thermal Shock Resistance, points 17
12 to 16

Alloy Composition

Carbon (C), % 0 to 0.020
0.13 to 0.17
Chromium (Cr), % 20 to 22.5
0
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 2.0 to 6.0
98.6 to 99.57
Manganese (Mn), % 0 to 1.0
0.3 to 0.6
Molybdenum (Mo), % 12.5 to 14.5
0
Nickel (Ni), % 51.3 to 63
0
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.8
0 to 0.3
Sulfur (S), % 0 to 0.025
0 to 0.025
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0