MakeItFrom.com
Menu (ESC)

Grade CX2MW Nickel vs. CC482K Bronze

Grade CX2MW nickel belongs to the nickel alloys classification, while CC482K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade CX2MW nickel and the bottom bar is CC482K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
110
Elongation at Break, % 34
5.6
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 84
40
Tensile Strength: Ultimate (UTS), MPa 620
300
Tensile Strength: Yield (Proof), MPa 350
160

Thermal Properties

Latent Heat of Fusion, J/g 330
190
Maximum Temperature: Mechanical, °C 980
160
Melting Completion (Liquidus), °C 1550
980
Melting Onset (Solidus), °C 1490
860
Specific Heat Capacity, J/kg-K 430
360
Thermal Conductivity, W/m-K 10
64
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
10
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
10

Otherwise Unclassified Properties

Base Metal Price, % relative 65
36
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 12
3.8
Embodied Energy, MJ/kg 170
62
Embodied Water, L/kg 290
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
14
Resilience: Unit (Modulus of Resilience), kJ/m3 290
120
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 19
9.5
Strength to Weight: Bending, points 18
11
Thermal Diffusivity, mm2/s 2.7
20
Thermal Shock Resistance, points 17
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 20 to 22.5
0
Copper (Cu), % 0
83.5 to 87
Iron (Fe), % 2.0 to 6.0
0 to 0.2
Lead (Pb), % 0
0.7 to 2.5
Manganese (Mn), % 0 to 1.0
0 to 0.2
Molybdenum (Mo), % 12.5 to 14.5
0
Nickel (Ni), % 51.3 to 63
0 to 2.0
Phosphorus (P), % 0 to 0.025
0 to 0.4
Silicon (Si), % 0 to 0.8
0 to 0.010
Sulfur (S), % 0 to 0.025
0 to 0.080
Tin (Sn), % 0
10.5 to 12.5
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
0 to 2.0