MakeItFrom.com
Menu (ESC)

Grade CX2MW Nickel vs. CC484K Bronze

Grade CX2MW nickel belongs to the nickel alloys classification, while CC484K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade CX2MW nickel and the bottom bar is CC484K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
110
Elongation at Break, % 34
11
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 84
41
Tensile Strength: Ultimate (UTS), MPa 620
330
Tensile Strength: Yield (Proof), MPa 350
200

Thermal Properties

Latent Heat of Fusion, J/g 330
190
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1550
1000
Melting Onset (Solidus), °C 1490
870
Specific Heat Capacity, J/kg-K 430
370
Thermal Conductivity, W/m-K 10
70
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
9.1
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 65
37
Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 12
3.9
Embodied Energy, MJ/kg 170
64
Embodied Water, L/kg 290
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
32
Resilience: Unit (Modulus of Resilience), kJ/m3 290
180
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 19
10
Strength to Weight: Bending, points 18
12
Thermal Diffusivity, mm2/s 2.7
22
Thermal Shock Resistance, points 17
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.1
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 20 to 22.5
0
Copper (Cu), % 0
84.5 to 87.5
Iron (Fe), % 2.0 to 6.0
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.0
0 to 0.2
Molybdenum (Mo), % 12.5 to 14.5
0
Nickel (Ni), % 51.3 to 63
1.5 to 2.5
Phosphorus (P), % 0 to 0.025
0.050 to 0.4
Silicon (Si), % 0 to 0.8
0 to 0.010
Sulfur (S), % 0 to 0.025
0 to 0.050
Tin (Sn), % 0
11 to 13
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
0 to 0.4