MakeItFrom.com
Menu (ESC)

Grade CX2MW Nickel vs. C16200 Copper

Grade CX2MW nickel belongs to the nickel alloys classification, while C16200 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade CX2MW nickel and the bottom bar is C16200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
120
Elongation at Break, % 34
2.0 to 56
Fatigue Strength, MPa 260
100 to 210
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 84
43
Tensile Strength: Ultimate (UTS), MPa 620
240 to 550
Tensile Strength: Yield (Proof), MPa 350
48 to 470

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 980
370
Melting Completion (Liquidus), °C 1550
1080
Melting Onset (Solidus), °C 1490
1030
Specific Heat Capacity, J/kg-K 430
380
Thermal Conductivity, W/m-K 10
360
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
90
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
90

Otherwise Unclassified Properties

Base Metal Price, % relative 65
30
Density, g/cm3 8.9
9.0
Embodied Carbon, kg CO2/kg material 12
2.6
Embodied Energy, MJ/kg 170
41
Embodied Water, L/kg 290
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
10 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 290
10 to 970
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 23
18
Strength to Weight: Axial, points 19
7.4 to 17
Strength to Weight: Bending, points 18
9.6 to 17
Thermal Diffusivity, mm2/s 2.7
100
Thermal Shock Resistance, points 17
8.7 to 20

Alloy Composition

Cadmium (Cd), % 0
0.7 to 1.2
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 20 to 22.5
0
Copper (Cu), % 0
98.6 to 99.3
Iron (Fe), % 2.0 to 6.0
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 12.5 to 14.5
0
Nickel (Ni), % 51.3 to 63
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.025
0
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0