MakeItFrom.com
Menu (ESC)

Grade CX2MW Nickel vs. C48500 Brass

Grade CX2MW nickel belongs to the nickel alloys classification, while C48500 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade CX2MW nickel and the bottom bar is C48500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
100
Elongation at Break, % 34
13 to 40
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 84
39
Tensile Strength: Ultimate (UTS), MPa 620
400 to 500
Tensile Strength: Yield (Proof), MPa 350
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 330
170
Maximum Temperature: Mechanical, °C 980
120
Melting Completion (Liquidus), °C 1550
900
Melting Onset (Solidus), °C 1490
890
Specific Heat Capacity, J/kg-K 430
380
Thermal Conductivity, W/m-K 10
120
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.5
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.5
29

Otherwise Unclassified Properties

Base Metal Price, % relative 65
23
Density, g/cm3 8.9
8.1
Embodied Carbon, kg CO2/kg material 12
2.7
Embodied Energy, MJ/kg 170
46
Embodied Water, L/kg 290
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
56 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 290
120 to 500
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 19
14 to 17
Strength to Weight: Bending, points 18
15 to 17
Thermal Diffusivity, mm2/s 2.7
38
Thermal Shock Resistance, points 17
13 to 17

Alloy Composition

Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 20 to 22.5
0
Copper (Cu), % 0
59 to 62
Iron (Fe), % 2.0 to 6.0
0 to 0.1
Lead (Pb), % 0
1.3 to 2.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 12.5 to 14.5
0
Nickel (Ni), % 51.3 to 63
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0.5 to 1.0
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
34.3 to 39.2
Residuals, % 0
0 to 0.4