MakeItFrom.com
Menu (ESC)

Grade CX2MW Nickel vs. C68300 Brass

Grade CX2MW nickel belongs to the nickel alloys classification, while C68300 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is grade CX2MW nickel and the bottom bar is C68300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
100
Elongation at Break, % 34
15
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 84
40
Tensile Strength: Ultimate (UTS), MPa 620
430
Tensile Strength: Yield (Proof), MPa 350
260

Thermal Properties

Latent Heat of Fusion, J/g 330
180
Maximum Temperature: Mechanical, °C 980
120
Melting Completion (Liquidus), °C 1550
900
Melting Onset (Solidus), °C 1490
890
Specific Heat Capacity, J/kg-K 430
390
Thermal Conductivity, W/m-K 10
120
Thermal Expansion, µm/m-K 12
20

Otherwise Unclassified Properties

Base Metal Price, % relative 65
23
Density, g/cm3 8.9
8.0
Embodied Carbon, kg CO2/kg material 12
2.8
Embodied Energy, MJ/kg 170
46
Embodied Water, L/kg 290
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
56
Resilience: Unit (Modulus of Resilience), kJ/m3 290
330
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 23
20
Strength to Weight: Axial, points 19
15
Strength to Weight: Bending, points 18
16
Thermal Diffusivity, mm2/s 2.7
38
Thermal Shock Resistance, points 17
14

Alloy Composition

Antimony (Sb), % 0
0.3 to 1.0
Cadmium (Cd), % 0
0 to 0.010
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 20 to 22.5
0
Copper (Cu), % 0
59 to 63
Iron (Fe), % 2.0 to 6.0
0
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 12.5 to 14.5
0
Nickel (Ni), % 51.3 to 63
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.8
0.3 to 1.0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0.050 to 0.2
Tungsten (W), % 2.5 to 3.5
0
Vanadium (V), % 0 to 0.35
0
Zinc (Zn), % 0
34.2 to 40.4
Residuals, % 0
0 to 0.5