MakeItFrom.com
Menu (ESC)

Grade CY40 Nickel vs. 2017 Aluminum

Grade CY40 nickel belongs to the nickel alloys classification, while 2017 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CY40 nickel and the bottom bar is 2017 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 34
12 to 18
Fatigue Strength, MPa 160
90 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
27
Tensile Strength: Ultimate (UTS), MPa 540
190 to 430
Tensile Strength: Yield (Proof), MPa 220
76 to 260

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 960
190
Melting Completion (Liquidus), °C 1350
640
Melting Onset (Solidus), °C 1300
510
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 14
150
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
38
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
110

Otherwise Unclassified Properties

Base Metal Price, % relative 55
10
Density, g/cm3 8.4
3.0
Embodied Carbon, kg CO2/kg material 9.1
8.0
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 260
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
24 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 130
41 to 470
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
46
Strength to Weight: Axial, points 18
17 to 40
Strength to Weight: Bending, points 18
24 to 42
Thermal Diffusivity, mm2/s 3.7
56
Thermal Shock Resistance, points 16
7.9 to 18

Alloy Composition

Aluminum (Al), % 0
91.6 to 95.5
Carbon (C), % 0 to 0.4
0
Chromium (Cr), % 14 to 17
0 to 0.1
Copper (Cu), % 0
3.5 to 4.5
Iron (Fe), % 0 to 11
0 to 0.7
Magnesium (Mg), % 0
0.4 to 0.8
Manganese (Mn), % 0 to 1.5
0.4 to 1.0
Nickel (Ni), % 67 to 86
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 3.0
0.2 to 0.8
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15