MakeItFrom.com
Menu (ESC)

Grade CY40 Nickel vs. 336.0 Aluminum

Grade CY40 nickel belongs to the nickel alloys classification, while 336.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CY40 nickel and the bottom bar is 336.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
75
Elongation at Break, % 34
0.5
Fatigue Strength, MPa 160
80 to 93
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
28
Tensile Strength: Ultimate (UTS), MPa 540
250 to 320
Tensile Strength: Yield (Proof), MPa 220
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 330
570
Maximum Temperature: Mechanical, °C 960
210
Melting Completion (Liquidus), °C 1350
570
Melting Onset (Solidus), °C 1300
540
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 14
120
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
29
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
95

Otherwise Unclassified Properties

Base Metal Price, % relative 55
11
Density, g/cm3 8.4
2.8
Embodied Carbon, kg CO2/kg material 9.1
7.9
Embodied Energy, MJ/kg 130
140
Embodied Water, L/kg 260
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
1.1 to 1.6
Resilience: Unit (Modulus of Resilience), kJ/m3 130
250 to 580
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
51
Strength to Weight: Axial, points 18
25 to 32
Strength to Weight: Bending, points 18
32 to 38
Thermal Diffusivity, mm2/s 3.7
48
Thermal Shock Resistance, points 16
12 to 16

Alloy Composition

Aluminum (Al), % 0
79.1 to 85.8
Carbon (C), % 0 to 0.4
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0
0.5 to 1.5
Iron (Fe), % 0 to 11
0 to 1.2
Magnesium (Mg), % 0
0.7 to 1.3
Manganese (Mn), % 0 to 1.5
0 to 0.35
Nickel (Ni), % 67 to 86
2.0 to 3.0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 3.0
11 to 13
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.35