MakeItFrom.com
Menu (ESC)

Grade CY40 Nickel vs. 354.0 Aluminum

Grade CY40 nickel belongs to the nickel alloys classification, while 354.0 aluminum belongs to the aluminum alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CY40 nickel and the bottom bar is 354.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Elongation at Break, % 34
2.4 to 3.0
Fatigue Strength, MPa 160
92 to 120
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
27
Tensile Strength: Ultimate (UTS), MPa 540
360 to 380
Tensile Strength: Yield (Proof), MPa 220
280 to 310

Thermal Properties

Latent Heat of Fusion, J/g 330
530
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1350
600
Melting Onset (Solidus), °C 1300
550
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 14
130
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
32
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
110

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 9.1
7.8
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 260
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
8.6 to 9.8
Resilience: Unit (Modulus of Resilience), kJ/m3 130
540 to 670
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
52
Strength to Weight: Axial, points 18
37 to 39
Strength to Weight: Bending, points 18
42 to 44
Thermal Diffusivity, mm2/s 3.7
52
Thermal Shock Resistance, points 16
17 to 18

Alloy Composition

Aluminum (Al), % 0
87.3 to 89.4
Carbon (C), % 0 to 0.4
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0
1.6 to 2.0
Iron (Fe), % 0 to 11
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 1.5
0 to 0.1
Nickel (Ni), % 67 to 86
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 3.0
8.6 to 9.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15