MakeItFrom.com
Menu (ESC)

Grade CY40 Nickel vs. 6060 Aluminum

Grade CY40 nickel belongs to the nickel alloys classification, while 6060 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CY40 nickel and the bottom bar is 6060 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 34
9.0 to 16
Fatigue Strength, MPa 160
37 to 70
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Tensile Strength: Ultimate (UTS), MPa 540
140 to 220
Tensile Strength: Yield (Proof), MPa 220
71 to 170

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 960
160
Melting Completion (Liquidus), °C 1350
660
Melting Onset (Solidus), °C 1300
610
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 14
210
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
54
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
180

Otherwise Unclassified Properties

Base Metal Price, % relative 55
9.5
Density, g/cm3 8.4
2.7
Embodied Carbon, kg CO2/kg material 9.1
8.3
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 260
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
13 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 130
37 to 210
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 18
14 to 23
Strength to Weight: Bending, points 18
22 to 30
Thermal Diffusivity, mm2/s 3.7
85
Thermal Shock Resistance, points 16
6.3 to 9.9

Alloy Composition

Aluminum (Al), % 0
97.9 to 99.3
Carbon (C), % 0 to 0.4
0
Chromium (Cr), % 14 to 17
0 to 0.050
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 0 to 11
0.1 to 0.3
Magnesium (Mg), % 0
0.35 to 0.6
Manganese (Mn), % 0 to 1.5
0 to 0.1
Nickel (Ni), % 67 to 86
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 3.0
0.3 to 0.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15