MakeItFrom.com
Menu (ESC)

Grade CY40 Nickel vs. 7022 Aluminum

Grade CY40 nickel belongs to the nickel alloys classification, while 7022 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CY40 nickel and the bottom bar is 7022 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 34
6.3 to 8.0
Fatigue Strength, MPa 160
140 to 170
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 74
26
Tensile Strength: Ultimate (UTS), MPa 540
490 to 540
Tensile Strength: Yield (Proof), MPa 220
390 to 460

Thermal Properties

Latent Heat of Fusion, J/g 330
380
Maximum Temperature: Mechanical, °C 960
200
Melting Completion (Liquidus), °C 1350
640
Melting Onset (Solidus), °C 1300
480
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 14
140
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
21
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
65

Otherwise Unclassified Properties

Base Metal Price, % relative 55
10
Density, g/cm3 8.4
2.9
Embodied Carbon, kg CO2/kg material 9.1
8.5
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 260
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
29 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 130
1100 to 1500
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
47
Strength to Weight: Axial, points 18
47 to 51
Strength to Weight: Bending, points 18
47 to 50
Thermal Diffusivity, mm2/s 3.7
54
Thermal Shock Resistance, points 16
21 to 23

Alloy Composition

Aluminum (Al), % 0
87.9 to 92.4
Carbon (C), % 0 to 0.4
0
Chromium (Cr), % 14 to 17
0.1 to 0.3
Copper (Cu), % 0
0.5 to 1.0
Iron (Fe), % 0 to 11
0 to 0.5
Magnesium (Mg), % 0
2.6 to 3.7
Manganese (Mn), % 0 to 1.5
0.1 to 0.4
Nickel (Ni), % 67 to 86
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 3.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
4.3 to 5.2
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15