MakeItFrom.com
Menu (ESC)

Grade CY40 Nickel vs. 7050 Aluminum

Grade CY40 nickel belongs to the nickel alloys classification, while 7050 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CY40 nickel and the bottom bar is 7050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 34
2.2 to 12
Fatigue Strength, MPa 160
130 to 210
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 74
26
Tensile Strength: Ultimate (UTS), MPa 540
490 to 570
Tensile Strength: Yield (Proof), MPa 220
390 to 500

Thermal Properties

Latent Heat of Fusion, J/g 330
370
Maximum Temperature: Mechanical, °C 960
190
Melting Completion (Liquidus), °C 1350
630
Melting Onset (Solidus), °C 1300
490
Specific Heat Capacity, J/kg-K 470
860
Thermal Conductivity, W/m-K 14
140
Thermal Expansion, µm/m-K 12
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
35
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
100

Otherwise Unclassified Properties

Base Metal Price, % relative 55
10
Density, g/cm3 8.4
3.1
Embodied Carbon, kg CO2/kg material 9.1
8.2
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 260
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
10 to 55
Resilience: Unit (Modulus of Resilience), kJ/m3 130
1110 to 1760
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 23
45
Strength to Weight: Axial, points 18
45 to 51
Strength to Weight: Bending, points 18
45 to 50
Thermal Diffusivity, mm2/s 3.7
54
Thermal Shock Resistance, points 16
21 to 25

Alloy Composition

Aluminum (Al), % 0
87.3 to 92.1
Carbon (C), % 0 to 0.4
0
Chromium (Cr), % 14 to 17
0 to 0.040
Copper (Cu), % 0
2.0 to 2.6
Iron (Fe), % 0 to 11
0 to 0.15
Magnesium (Mg), % 0
1.9 to 2.6
Manganese (Mn), % 0 to 1.5
0 to 0.1
Nickel (Ni), % 67 to 86
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 3.0
0 to 0.12
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.060
Zinc (Zn), % 0
5.7 to 6.7
Zirconium (Zr), % 0
0.080 to 0.15
Residuals, % 0
0 to 0.15