MakeItFrom.com
Menu (ESC)

Grade CY40 Nickel vs. A357.0 Aluminum

Grade CY40 nickel belongs to the nickel alloys classification, while A357.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CY40 nickel and the bottom bar is A357.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 34
3.7
Fatigue Strength, MPa 160
100
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
26
Tensile Strength: Ultimate (UTS), MPa 540
350
Tensile Strength: Yield (Proof), MPa 220
270

Thermal Properties

Latent Heat of Fusion, J/g 330
500
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1350
610
Melting Onset (Solidus), °C 1300
560
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 14
160
Thermal Expansion, µm/m-K 12
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
40
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
140

Otherwise Unclassified Properties

Base Metal Price, % relative 55
12
Density, g/cm3 8.4
2.6
Embodied Carbon, kg CO2/kg material 9.1
8.2
Embodied Energy, MJ/kg 130
150
Embodied Water, L/kg 260
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
12
Resilience: Unit (Modulus of Resilience), kJ/m3 130
520
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 23
53
Strength to Weight: Axial, points 18
38
Strength to Weight: Bending, points 18
43
Thermal Diffusivity, mm2/s 3.7
68
Thermal Shock Resistance, points 16
17

Alloy Composition

Aluminum (Al), % 0
90.8 to 93
Beryllium (Be), % 0
0.040 to 0.070
Carbon (C), % 0 to 0.4
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 0 to 11
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 0 to 1.5
0 to 0.1
Nickel (Ni), % 67 to 86
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 3.0
6.5 to 7.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.040 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15