MakeItFrom.com
Menu (ESC)

Grade CY40 Nickel vs. C71520 Copper-nickel

Grade CY40 nickel belongs to the nickel alloys classification, while C71520 copper-nickel belongs to the copper alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade CY40 nickel and the bottom bar is C71520 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
140
Elongation at Break, % 34
10 to 45
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 74
51
Tensile Strength: Ultimate (UTS), MPa 540
370 to 570
Tensile Strength: Yield (Proof), MPa 220
140 to 430

Thermal Properties

Latent Heat of Fusion, J/g 330
230
Maximum Temperature: Mechanical, °C 960
260
Melting Completion (Liquidus), °C 1350
1170
Melting Onset (Solidus), °C 1300
1120
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 14
32
Thermal Expansion, µm/m-K 12
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
5.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.8
5.8

Otherwise Unclassified Properties

Base Metal Price, % relative 55
40
Density, g/cm3 8.4
8.9
Embodied Carbon, kg CO2/kg material 9.1
5.0
Embodied Energy, MJ/kg 130
73
Embodied Water, L/kg 260
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
54 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 130
67 to 680
Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 23
19
Strength to Weight: Axial, points 18
12 to 18
Strength to Weight: Bending, points 18
13 to 17
Thermal Diffusivity, mm2/s 3.7
8.9
Thermal Shock Resistance, points 16
12 to 19

Alloy Composition

Carbon (C), % 0 to 0.4
0 to 0.050
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0
65 to 71.6
Iron (Fe), % 0 to 11
0.4 to 1.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.5
0 to 1.0
Nickel (Ni), % 67 to 86
28 to 33
Phosphorus (P), % 0 to 0.030
0 to 0.2
Silicon (Si), % 0 to 3.0
0
Sulfur (S), % 0 to 0.030
0 to 0.020
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5