MakeItFrom.com
Menu (ESC)

Grade CZ100 Nickel vs. 7108A Aluminum

Grade CZ100 nickel belongs to the nickel alloys classification, while 7108A aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade CZ100 nickel and the bottom bar is 7108A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
69
Elongation at Break, % 11
11 to 13
Fatigue Strength, MPa 68
120 to 130
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 69
26
Tensile Strength: Ultimate (UTS), MPa 390
350
Tensile Strength: Yield (Proof), MPa 140
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 310
380
Maximum Temperature: Mechanical, °C 900
210
Melting Completion (Liquidus), °C 1350
630
Melting Onset (Solidus), °C 1300
520
Specific Heat Capacity, J/kg-K 450
870
Thermal Conductivity, W/m-K 73
150
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 19
36
Electrical Conductivity: Equal Weight (Specific), % IACS 19
110

Otherwise Unclassified Properties

Base Metal Price, % relative 60
10
Density, g/cm3 8.8
2.9
Embodied Carbon, kg CO2/kg material 10
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 230
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 35
38 to 44
Resilience: Unit (Modulus of Resilience), kJ/m3 54
610 to 640
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 22
47
Strength to Weight: Axial, points 12
33 to 34
Strength to Weight: Bending, points 14
38
Thermal Diffusivity, mm2/s 19
59
Thermal Shock Resistance, points 14
15 to 16

Alloy Composition

Aluminum (Al), % 0
91.6 to 94.4
Carbon (C), % 0 to 1.0
0
Chromium (Cr), % 0
0 to 0.040
Copper (Cu), % 0 to 1.3
0 to 0.050
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 3.0
0 to 0.3
Magnesium (Mg), % 0
0.7 to 1.5
Manganese (Mn), % 0 to 1.5
0 to 0.050
Nickel (Ni), % 95 to 100
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 2.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.030
Zinc (Zn), % 0
4.8 to 5.8
Zirconium (Zr), % 0
0.15 to 0.25
Residuals, % 0
0 to 0.15