MakeItFrom.com
Menu (ESC)

Grade FDCrV Steel vs. A380.0 Aluminum

Grade FDCrV steel belongs to the iron alloys classification, while A380.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade FDCrV steel and the bottom bar is A380.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 540
80
Elastic (Young's, Tensile) Modulus, GPa 190
73
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 1800
290

Thermal Properties

Latent Heat of Fusion, J/g 250
510
Maximum Temperature: Mechanical, °C 410
170
Melting Completion (Liquidus), °C 1450
590
Melting Onset (Solidus), °C 1410
550
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 48
96
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
25
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
78

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
11
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 1.9
7.5
Embodied Energy, MJ/kg 26
140
Embodied Water, L/kg 49
1040

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
48
Strength to Weight: Axial, points 64
28
Strength to Weight: Bending, points 42
34
Thermal Diffusivity, mm2/s 13
38
Thermal Shock Resistance, points 53
13

Alloy Composition

Aluminum (Al), % 0
80.3 to 89.5
Carbon (C), % 0.62 to 0.72
0
Chromium (Cr), % 0.4 to 0.6
0
Copper (Cu), % 0 to 0.12
3.0 to 4.0
Iron (Fe), % 97.8 to 98.8
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0.5 to 0.9
0 to 0.5
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0.15 to 0.3
7.5 to 9.5
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.35
Vanadium (V), % 0.15 to 0.25
0
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.5