MakeItFrom.com
Menu (ESC)

Grade FDSiCr Steel vs. 206.0 Aluminum

Grade FDSiCr steel belongs to the iron alloys classification, while 206.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade FDSiCr steel and the bottom bar is 206.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 580
95 to 110
Elastic (Young's, Tensile) Modulus, GPa 190
71
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 1930
330 to 440

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Maximum Temperature: Mechanical, °C 410
170
Melting Completion (Liquidus), °C 1440
650
Melting Onset (Solidus), °C 1400
570
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 48
120
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
33
Electrical Conductivity: Equal Weight (Specific), % IACS 8.5
99

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
11
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 1.5
8.0
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 48
1150

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 69
30 to 40
Strength to Weight: Bending, points 44
35 to 42
Thermal Diffusivity, mm2/s 13
46
Thermal Shock Resistance, points 58
17 to 23

Alloy Composition

Aluminum (Al), % 0
93.3 to 95.3
Carbon (C), % 0.5 to 0.6
0
Chromium (Cr), % 0.5 to 0.8
0
Copper (Cu), % 0 to 0.12
4.2 to 5.0
Iron (Fe), % 96.5 to 97.8
0 to 0.15
Magnesium (Mg), % 0
0.15 to 0.35
Manganese (Mn), % 0.5 to 0.9
0.2 to 0.5
Nickel (Ni), % 0
0 to 0.050
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 1.2 to 1.6
0 to 0.1
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15