MakeItFrom.com
Menu (ESC)

Grade FDSiCrV Steel vs. 2024 Aluminum

Grade FDSiCrV steel belongs to the iron alloys classification, while 2024 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade FDSiCrV steel and the bottom bar is 2024 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
71
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
27
Tensile Strength: Ultimate (UTS), MPa 2100
200 to 540

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Maximum Temperature: Mechanical, °C 420
200
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1400
500
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 47
120
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
30
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
90

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
11
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 1.9
8.3
Embodied Energy, MJ/kg 26
150
Embodied Water, L/kg 50
1140

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 75
18 to 50
Strength to Weight: Bending, points 47
25 to 49
Thermal Diffusivity, mm2/s 13
46
Thermal Shock Resistance, points 63
8.6 to 24

Alloy Composition

Aluminum (Al), % 0
90.7 to 94.7
Carbon (C), % 0.5 to 0.7
0
Chromium (Cr), % 0.5 to 1.0
0 to 0.1
Copper (Cu), % 0 to 0.12
3.8 to 4.9
Iron (Fe), % 96 to 97.8
0 to 0.5
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0.4 to 0.9
0.3 to 0.9
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 1.2 to 1.7
0 to 0.5
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.15
Vanadium (V), % 0.1 to 0.25
0
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15