MakeItFrom.com
Menu (ESC)

Grade FDSiCrV Steel vs. 535.0 Aluminum

Grade FDSiCrV steel belongs to the iron alloys classification, while 535.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade FDSiCrV steel and the bottom bar is 535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 630
70
Elastic (Young's, Tensile) Modulus, GPa 190
67
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 80
25
Tensile Strength: Ultimate (UTS), MPa 2100
270

Thermal Properties

Latent Heat of Fusion, J/g 270
390
Maximum Temperature: Mechanical, °C 420
170
Melting Completion (Liquidus), °C 1440
630
Melting Onset (Solidus), °C 1400
570
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 47
100
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.4
23
Electrical Conductivity: Equal Weight (Specific), % IACS 8.6
79

Otherwise Unclassified Properties

Base Metal Price, % relative 2.3
9.5
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 1.9
9.4
Embodied Energy, MJ/kg 26
160
Embodied Water, L/kg 50
1180

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 75
28
Strength to Weight: Bending, points 47
35
Thermal Diffusivity, mm2/s 13
42
Thermal Shock Resistance, points 63
12

Alloy Composition

Aluminum (Al), % 0
91.5 to 93.6
Beryllium (Be), % 0
0.0030 to 0.0070
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0.5 to 0.7
0
Chromium (Cr), % 0.5 to 1.0
0
Copper (Cu), % 0 to 0.12
0 to 0.050
Iron (Fe), % 96 to 97.8
0 to 0.15
Magnesium (Mg), % 0
6.2 to 7.5
Manganese (Mn), % 0.4 to 0.9
0.1 to 0.25
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 1.2 to 1.7
0 to 0.15
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0.1 to 0.25
Vanadium (V), % 0.1 to 0.25
0
Residuals, % 0
0 to 0.15