MakeItFrom.com
Menu (ESC)

Grade M30C Nickel vs. CC330G Bronze

Grade M30C nickel belongs to the nickel alloys classification, while CC330G bronze belongs to the copper alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade M30C nickel and the bottom bar is CC330G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 160
110
Elongation at Break, % 29
20
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 61
42
Tensile Strength: Ultimate (UTS), MPa 510
530
Tensile Strength: Yield (Proof), MPa 250
190

Thermal Properties

Latent Heat of Fusion, J/g 290
230
Maximum Temperature: Mechanical, °C 900
220
Melting Completion (Liquidus), °C 1290
1050
Melting Onset (Solidus), °C 1240
1000
Specific Heat Capacity, J/kg-K 430
430
Thermal Conductivity, W/m-K 22
62
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
14
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
15

Otherwise Unclassified Properties

Base Metal Price, % relative 60
29
Density, g/cm3 8.8
8.4
Embodied Carbon, kg CO2/kg material 9.5
3.2
Embodied Energy, MJ/kg 140
52
Embodied Water, L/kg 250
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
82
Resilience: Unit (Modulus of Resilience), kJ/m3 200
170
Stiffness to Weight: Axial, points 10
7.5
Stiffness to Weight: Bending, points 21
19
Strength to Weight: Axial, points 16
18
Strength to Weight: Bending, points 16
17
Thermal Diffusivity, mm2/s 5.7
17
Thermal Shock Resistance, points 18
19

Alloy Composition

Aluminum (Al), % 0
8.0 to 10.5
Carbon (C), % 0 to 0.3
0
Copper (Cu), % 26 to 33
87 to 92
Iron (Fe), % 0 to 3.5
0 to 1.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.5
0 to 0.5
Nickel (Ni), % 56.6 to 72
0 to 1.0
Niobium (Nb), % 1.0 to 3.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 1.0 to 2.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
0 to 0.5