MakeItFrom.com
Menu (ESC)

Grade M30C Nickel vs. C85900 Brass

Grade M30C nickel belongs to the nickel alloys classification, while C85900 brass belongs to the copper alloys. They have a modest 31% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade M30C nickel and the bottom bar is C85900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 160
100
Elongation at Break, % 29
30
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 61
40
Tensile Strength: Ultimate (UTS), MPa 510
460
Tensile Strength: Yield (Proof), MPa 250
190

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 900
130
Melting Completion (Liquidus), °C 1290
830
Melting Onset (Solidus), °C 1240
790
Specific Heat Capacity, J/kg-K 430
390
Thermal Conductivity, W/m-K 22
89
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
25
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
28

Otherwise Unclassified Properties

Base Metal Price, % relative 60
24
Density, g/cm3 8.8
8.0
Embodied Carbon, kg CO2/kg material 9.5
2.9
Embodied Energy, MJ/kg 140
49
Embodied Water, L/kg 250
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 200
170
Stiffness to Weight: Axial, points 10
7.3
Stiffness to Weight: Bending, points 21
20
Strength to Weight: Axial, points 16
16
Strength to Weight: Bending, points 16
17
Thermal Diffusivity, mm2/s 5.7
29
Thermal Shock Resistance, points 18
16

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.6
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0
0 to 0.2
Carbon (C), % 0 to 0.3
0
Copper (Cu), % 26 to 33
58 to 62
Iron (Fe), % 0 to 3.5
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 0 to 1.5
0 to 0.010
Nickel (Ni), % 56.6 to 72
0 to 1.5
Niobium (Nb), % 1.0 to 3.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.010
Silicon (Si), % 1.0 to 2.0
0 to 0.25
Sulfur (S), % 0 to 0.030
0.1 to 0.65
Tin (Sn), % 0
0 to 1.5
Zinc (Zn), % 0
31 to 41
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.7