MakeItFrom.com
Menu (ESC)

Grade M30C Nickel vs. C86200 Bronze

Grade M30C nickel belongs to the nickel alloys classification, while C86200 bronze belongs to the copper alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade M30C nickel and the bottom bar is C86200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 160
110
Elongation at Break, % 29
21
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 61
42
Tensile Strength: Ultimate (UTS), MPa 510
710
Tensile Strength: Yield (Proof), MPa 250
350

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 900
160
Melting Completion (Liquidus), °C 1290
940
Melting Onset (Solidus), °C 1240
900
Specific Heat Capacity, J/kg-K 430
410
Thermal Conductivity, W/m-K 22
35
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 60
23
Density, g/cm3 8.8
8.0
Embodied Carbon, kg CO2/kg material 9.5
2.9
Embodied Energy, MJ/kg 140
49
Embodied Water, L/kg 250
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 200
540
Stiffness to Weight: Axial, points 10
7.8
Stiffness to Weight: Bending, points 21
20
Strength to Weight: Axial, points 16
25
Strength to Weight: Bending, points 16
22
Thermal Diffusivity, mm2/s 5.7
11
Thermal Shock Resistance, points 18
23

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.9
Carbon (C), % 0 to 0.3
0
Copper (Cu), % 26 to 33
60 to 66
Iron (Fe), % 0 to 3.5
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.5
2.5 to 5.0
Nickel (Ni), % 56.6 to 72
0 to 1.0
Niobium (Nb), % 1.0 to 3.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 1.0 to 2.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0