MakeItFrom.com
Menu (ESC)

Grade M30C Nickel vs. C95800 Bronze

Grade M30C nickel belongs to the nickel alloys classification, while C95800 bronze belongs to the copper alloys. They have a modest 37% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is grade M30C nickel and the bottom bar is C95800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 160
120
Elongation at Break, % 29
22
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 61
44
Tensile Strength: Ultimate (UTS), MPa 510
660
Tensile Strength: Yield (Proof), MPa 250
270

Thermal Properties

Latent Heat of Fusion, J/g 290
230
Maximum Temperature: Mechanical, °C 900
230
Melting Completion (Liquidus), °C 1290
1060
Melting Onset (Solidus), °C 1240
1040
Specific Heat Capacity, J/kg-K 430
440
Thermal Conductivity, W/m-K 22
36
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 60
29
Density, g/cm3 8.8
8.3
Embodied Carbon, kg CO2/kg material 9.5
3.4
Embodied Energy, MJ/kg 140
55
Embodied Water, L/kg 250
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 200
310
Stiffness to Weight: Axial, points 10
7.9
Stiffness to Weight: Bending, points 21
20
Strength to Weight: Axial, points 16
22
Strength to Weight: Bending, points 16
20
Thermal Diffusivity, mm2/s 5.7
9.9
Thermal Shock Resistance, points 18
23

Alloy Composition

Aluminum (Al), % 0
8.5 to 9.5
Carbon (C), % 0 to 0.3
0
Copper (Cu), % 26 to 33
79 to 83.2
Iron (Fe), % 0 to 3.5
3.5 to 4.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.5
0.8 to 1.5
Nickel (Ni), % 56.6 to 72
4.0 to 5.0
Niobium (Nb), % 1.0 to 3.0
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 1.0 to 2.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.5