MakeItFrom.com
Menu (ESC)

Grade M30H Nickel vs. 6013 Aluminum

Grade M30H nickel belongs to the nickel alloys classification, while 6013 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade M30H nickel and the bottom bar is 6013 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 160
69
Elongation at Break, % 11
3.4 to 22
Fatigue Strength, MPa 230
98 to 140
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 61
26
Tensile Strength: Ultimate (UTS), MPa 770
310 to 410
Tensile Strength: Yield (Proof), MPa 470
170 to 350

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 900
160
Melting Completion (Liquidus), °C 1250
650
Melting Onset (Solidus), °C 1200
580
Specific Heat Capacity, J/kg-K 440
900
Thermal Conductivity, W/m-K 22
150
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
38
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
120

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.6
2.8
Embodied Carbon, kg CO2/kg material 7.7
8.3
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 250
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 75
13 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 700
200 to 900
Stiffness to Weight: Axial, points 10
14
Stiffness to Weight: Bending, points 21
49
Strength to Weight: Axial, points 25
31 to 41
Strength to Weight: Bending, points 22
37 to 44
Thermal Diffusivity, mm2/s 5.7
60
Thermal Shock Resistance, points 27
14 to 18

Alloy Composition

Aluminum (Al), % 0
94.8 to 97.8
Carbon (C), % 0 to 0.3
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 27 to 33
0.6 to 1.1
Iron (Fe), % 0 to 3.5
0 to 0.5
Magnesium (Mg), % 0
0.8 to 1.2
Manganese (Mn), % 0 to 1.5
0.2 to 0.8
Nickel (Ni), % 57.9 to 70.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 2.7 to 3.7
0.6 to 1.0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15