MakeItFrom.com
Menu (ESC)

Grade M30H Nickel vs. EN AC-51200 Aluminum

Grade M30H nickel belongs to the nickel alloys classification, while EN AC-51200 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade M30H nickel and the bottom bar is EN AC-51200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 160
67
Elongation at Break, % 11
1.1
Fatigue Strength, MPa 230
100
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 61
25
Tensile Strength: Ultimate (UTS), MPa 770
220
Tensile Strength: Yield (Proof), MPa 470
150

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 900
170
Melting Completion (Liquidus), °C 1250
640
Melting Onset (Solidus), °C 1200
570
Specific Heat Capacity, J/kg-K 440
910
Thermal Conductivity, W/m-K 22
92
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
22
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
74

Otherwise Unclassified Properties

Base Metal Price, % relative 50
9.5
Density, g/cm3 8.6
2.6
Embodied Carbon, kg CO2/kg material 7.7
9.6
Embodied Energy, MJ/kg 110
150
Embodied Water, L/kg 250
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 75
2.2
Resilience: Unit (Modulus of Resilience), kJ/m3 700
160
Stiffness to Weight: Axial, points 10
14
Stiffness to Weight: Bending, points 21
51
Strength to Weight: Axial, points 25
24
Strength to Weight: Bending, points 22
31
Thermal Diffusivity, mm2/s 5.7
39
Thermal Shock Resistance, points 27
10

Alloy Composition

Aluminum (Al), % 0
84.5 to 92
Carbon (C), % 0 to 0.3
0
Copper (Cu), % 27 to 33
0 to 0.1
Iron (Fe), % 0 to 3.5
0 to 1.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
8.0 to 10.5
Manganese (Mn), % 0 to 1.5
0 to 0.55
Nickel (Ni), % 57.9 to 70.3
0 to 0.1
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 2.7 to 3.7
0 to 2.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15