MakeItFrom.com
Menu (ESC)

Grade M30H Nickel vs. C41300 Brass

Grade M30H nickel belongs to the nickel alloys classification, while C41300 brass belongs to the copper alloys. They have a modest 30% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is grade M30H nickel and the bottom bar is C41300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 160
110
Elongation at Break, % 11
2.0 to 44
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 61
42
Tensile Strength: Ultimate (UTS), MPa 770
300 to 630
Tensile Strength: Yield (Proof), MPa 470
120 to 570

Thermal Properties

Latent Heat of Fusion, J/g 320
200
Maximum Temperature: Mechanical, °C 900
180
Melting Completion (Liquidus), °C 1250
1040
Melting Onset (Solidus), °C 1200
1010
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 22
130
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
30
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
31

Otherwise Unclassified Properties

Base Metal Price, % relative 50
29
Density, g/cm3 8.6
8.7
Embodied Carbon, kg CO2/kg material 7.7
2.7
Embodied Energy, MJ/kg 110
44
Embodied Water, L/kg 250
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 75
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 700
69 to 1440
Stiffness to Weight: Axial, points 10
7.2
Stiffness to Weight: Bending, points 21
18
Strength to Weight: Axial, points 25
9.6 to 20
Strength to Weight: Bending, points 22
11 to 19
Thermal Diffusivity, mm2/s 5.7
40
Thermal Shock Resistance, points 27
11 to 22

Alloy Composition

Carbon (C), % 0 to 0.3
0
Copper (Cu), % 27 to 33
89 to 93
Iron (Fe), % 0 to 3.5
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 57.9 to 70.3
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 2.7 to 3.7
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.7 to 1.3
Zinc (Zn), % 0
5.1 to 10.3
Residuals, % 0
0 to 0.5