MakeItFrom.com
Menu (ESC)

Grade M30H Nickel vs. C96900 Copper-nickel

Grade M30H nickel belongs to the nickel alloys classification, while C96900 copper-nickel belongs to the copper alloys. They have 46% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade M30H nickel and the bottom bar is C96900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 160
120
Elongation at Break, % 11
4.5
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 61
45
Tensile Strength: Ultimate (UTS), MPa 770
850
Tensile Strength: Yield (Proof), MPa 470
830

Thermal Properties

Latent Heat of Fusion, J/g 320
210
Maximum Temperature: Mechanical, °C 900
210
Melting Completion (Liquidus), °C 1250
1060
Melting Onset (Solidus), °C 1200
960
Specific Heat Capacity, J/kg-K 440
380
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 50
39
Density, g/cm3 8.6
8.8
Embodied Carbon, kg CO2/kg material 7.7
4.6
Embodied Energy, MJ/kg 110
72
Embodied Water, L/kg 250
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 75
38
Resilience: Unit (Modulus of Resilience), kJ/m3 700
2820
Stiffness to Weight: Axial, points 10
7.7
Stiffness to Weight: Bending, points 21
19
Strength to Weight: Axial, points 25
27
Strength to Weight: Bending, points 22
23
Thermal Shock Resistance, points 27
30

Alloy Composition

Carbon (C), % 0 to 0.3
0
Copper (Cu), % 27 to 33
73.6 to 78
Iron (Fe), % 0 to 3.5
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 1.5
0.050 to 0.3
Nickel (Ni), % 57.9 to 70.3
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 2.7 to 3.7
0 to 0.3
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5