MakeItFrom.com
Menu (ESC)

Grade M35-1 Nickel vs. CC762S Brass

Grade M35-1 nickel belongs to the nickel alloys classification, while CC762S brass belongs to the copper alloys. They have a modest 34% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is grade M35-1 nickel and the bottom bar is CC762S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 160
110
Elongation at Break, % 28
7.3
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 62
43
Tensile Strength: Ultimate (UTS), MPa 500
840
Tensile Strength: Yield (Proof), MPa 190
540

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 900
160
Melting Completion (Liquidus), °C 1280
920
Melting Onset (Solidus), °C 1240
870
Specific Heat Capacity, J/kg-K 430
420
Thermal Conductivity, W/m-K 22
51
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.3
28
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
32

Otherwise Unclassified Properties

Base Metal Price, % relative 55
24
Density, g/cm3 8.8
8.0
Embodied Carbon, kg CO2/kg material 8.2
3.1
Embodied Energy, MJ/kg 120
51
Embodied Water, L/kg 250
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
54
Resilience: Unit (Modulus of Resilience), kJ/m3 120
1290
Stiffness to Weight: Axial, points 10
7.8
Stiffness to Weight: Bending, points 21
20
Strength to Weight: Axial, points 16
29
Strength to Weight: Bending, points 16
25
Thermal Diffusivity, mm2/s 5.7
15
Thermal Shock Resistance, points 17
27

Alloy Composition

Aluminum (Al), % 0
3.0 to 7.0
Antimony (Sb), % 0
0 to 0.030
Carbon (C), % 0 to 0.35
0
Copper (Cu), % 26 to 33
57 to 67
Iron (Fe), % 0 to 3.5
1.5 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 1.5
2.5 to 5.0
Nickel (Ni), % 59.8 to 74
0 to 3.0
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.030
0 to 0.030
Silicon (Si), % 0 to 1.3
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
13.4 to 36