MakeItFrom.com
Menu (ESC)

Grade N12MV Nickel vs. 4006 Aluminum

Grade N12MV nickel belongs to the nickel alloys classification, while 4006 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade N12MV nickel and the bottom bar is 4006 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
69
Elongation at Break, % 6.8
3.4 to 24
Fatigue Strength, MPa 130
35 to 110
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 84
26
Tensile Strength: Ultimate (UTS), MPa 600
110 to 160
Tensile Strength: Yield (Proof), MPa 310
62 to 140

Thermal Properties

Latent Heat of Fusion, J/g 320
410
Maximum Temperature: Mechanical, °C 900
160
Melting Completion (Liquidus), °C 1620
640
Melting Onset (Solidus), °C 1570
620
Specific Heat Capacity, J/kg-K 390
900
Thermal Expansion, µm/m-K 10
23

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.0
Density, g/cm3 9.2
2.7
Embodied Carbon, kg CO2/kg material 16
8.1
Embodied Energy, MJ/kg 200
150
Embodied Water, L/kg 260
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
5.1 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 220
28 to 130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 22
50
Strength to Weight: Axial, points 18
11 to 16
Strength to Weight: Bending, points 17
19 to 24
Thermal Shock Resistance, points 19
4.9 to 7.0

Alloy Composition

Aluminum (Al), % 0
97.4 to 98.7
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 0 to 1.0
0 to 0.2
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 4.0 to 6.0
0.5 to 0.8
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 0.050
Molybdenum (Mo), % 26 to 30
0
Nickel (Ni), % 60.2 to 69.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.8 to 1.2
Sulfur (S), % 0 to 0.030
0
Vanadium (V), % 0.2 to 0.6
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.15