MakeItFrom.com
Menu (ESC)

Grade N12MV Nickel vs. A356.0 Aluminum

Grade N12MV nickel belongs to the nickel alloys classification, while A356.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is grade N12MV nickel and the bottom bar is A356.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 220
70
Elongation at Break, % 6.8
3.0 to 6.0
Fatigue Strength, MPa 130
50 to 90
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 84
26
Tensile Strength: Ultimate (UTS), MPa 600
160 to 270
Tensile Strength: Yield (Proof), MPa 310
83 to 200

Thermal Properties

Latent Heat of Fusion, J/g 320
500
Maximum Temperature: Mechanical, °C 900
170
Melting Completion (Liquidus), °C 1620
610
Melting Onset (Solidus), °C 1570
570
Specific Heat Capacity, J/kg-K 390
900
Thermal Expansion, µm/m-K 10
21

Otherwise Unclassified Properties

Base Metal Price, % relative 75
9.5
Density, g/cm3 9.2
2.6
Embodied Carbon, kg CO2/kg material 16
8.0
Embodied Energy, MJ/kg 200
150
Embodied Water, L/kg 260
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
4.8 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 220
49 to 300
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 22
53
Strength to Weight: Axial, points 18
17 to 29
Strength to Weight: Bending, points 17
25 to 36
Thermal Shock Resistance, points 19
7.6 to 13

Alloy Composition

Aluminum (Al), % 0
91.1 to 93.3
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 0 to 1.0
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 4.0 to 6.0
0 to 0.2
Magnesium (Mg), % 0
0.25 to 0.45
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 26 to 30
0
Nickel (Ni), % 60.2 to 69.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
6.5 to 7.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0.2 to 0.6
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15