MakeItFrom.com
Menu (ESC)

Grade Ti-Pd16 Titanium vs. EN 1.4122 Stainless Steel

Grade Ti-Pd16 titanium belongs to the titanium alloys classification, while EN 1.4122 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd16 titanium and the bottom bar is EN 1.4122 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 17
14
Fatigue Strength, MPa 200
260 to 360
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 390
790 to 850
Tensile Strength: Yield (Proof), MPa 310
450 to 630

Thermal Properties

Latent Heat of Fusion, J/g 420
280
Maximum Temperature: Mechanical, °C 320
870
Melting Completion (Liquidus), °C 1660
1440
Melting Onset (Solidus), °C 1610
1400
Specific Heat Capacity, J/kg-K 540
480
Thermal Conductivity, W/m-K 22
15
Thermal Expansion, µm/m-K 8.7
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
2.5

Otherwise Unclassified Properties

Density, g/cm3 4.5
7.7
Embodied Carbon, kg CO2/kg material 36
2.4
Embodied Energy, MJ/kg 600
33
Embodied Water, L/kg 230
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62
93 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 440
520 to 1000
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 24
28 to 31
Strength to Weight: Bending, points 26
25 to 26
Thermal Diffusivity, mm2/s 8.9
4.0
Thermal Shock Resistance, points 30
28 to 30

Alloy Composition

Carbon (C), % 0 to 0.1
0.33 to 0.45
Chromium (Cr), % 0
15.5 to 17.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
77.2 to 83.4
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0.8 to 1.3
Nickel (Ni), % 0 to 0.030
0 to 1.0
Oxygen (O), % 0 to 0.18
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 98.8 to 99.96
0
Residuals, % 0 to 0.4
0