MakeItFrom.com
Menu (ESC)

Grade Ti-Pd16 Titanium vs. C90700 Bronze

Grade Ti-Pd16 titanium belongs to the titanium alloys classification, while C90700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is grade Ti-Pd16 titanium and the bottom bar is C90700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
90
Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 17
12
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 390
330
Tensile Strength: Yield (Proof), MPa 310
180

Thermal Properties

Latent Heat of Fusion, J/g 420
190
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1660
1000
Melting Onset (Solidus), °C 1610
830
Specific Heat Capacity, J/kg-K 540
370
Thermal Conductivity, W/m-K 22
71
Thermal Expansion, µm/m-K 8.7
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
10
Electrical Conductivity: Equal Weight (Specific), % IACS 7.1
10

Otherwise Unclassified Properties

Density, g/cm3 4.5
8.7
Embodied Carbon, kg CO2/kg material 36
3.7
Embodied Energy, MJ/kg 600
60
Embodied Water, L/kg 230
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 62
34
Resilience: Unit (Modulus of Resilience), kJ/m3 440
150
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 24
10
Strength to Weight: Bending, points 26
12
Thermal Diffusivity, mm2/s 8.9
22
Thermal Shock Resistance, points 30
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
88 to 90
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.3
0 to 0.15
Lead (Pb), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.030
0 to 0.5
Oxygen (O), % 0 to 0.18
0
Palladium (Pd), % 0.040 to 0.080
0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
10 to 12
Titanium (Ti), % 98.8 to 99.96
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6